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ENGINEERING RELATIONSHIPS FOR 
TURBULENT FORCED-CONVECTION HEAT TRANSFER 

IN DUCTS WITH FLUX TRANSIENTS 

by 

Ralph P . Stein 

ABSTRACT 

Engineering relationships to account for turbulent 
forced-convection heat transfer in ducts during heat-flux 
t ransients and steady flow are derived. These relationships 
are suggested as more accurate replacements for the simple 
heat-transfer-coefficient expression tg - T = q/h currently 
used in nnost engineering computations involving t rans ients . 
The new relationships have the form 

h 2 k p \ i l u 3 T / ••• ' 

where Rj and g are dimensionless coefficients depending on 
Reynolds and Prandtl numbers and on duct shape. Tabulated 
values of these coefficients for the circular tube, para l le l -
plane duct, and pin bundle are given for wide ranges of 
Reynolds and Prandtl numbers, with .emphasis on liquid 
meta l s . 

INTRODUCTION 

The necessi ty to account for turbulent forced-convection heat t r an s ­
fer in ducts during wall heat-flux t ransients occurs frequently in engineering 
analysis. One of the oldest problems of this kind occurs in the design of 
periodic-flow heat-exchangers (regenerators); one of the more recent oc­
curs in safety studies of liquid-metal fas t -breeder nuclear reac to rs , where 
it is required to consider incidents involving large and extremely rapid 
heat-flux changes. Although the main motivation for the work reported 
here is nuc lea r - reac to r applications, with emphasis on liquid metals , the 
resul ts have more general applicability. 

The traditional engineering method used to account for forced-
convection heat t ransfer during t ransients assumes that the simple heat-
transfer-coefficient relation applies, i.e., that the local heat flux at the 



duct wall is directly proportional to the temperature difference between the 
wall and the "bulk" of the fluid. Thus, the familiar relationship 

t3 - t = q/h (1) 

is used in most, if not all, practical engineering analyses involving t ran­
sients. In general, q, tg, and t a re unknown functions of time and duct 
axial distance; and h is taken equal to its fully developed steady-state 
value, and is independent of time when the flow is steady. 

Equation 1 serves as a coupling or boundary condition between an 
appropriately simplified version of the energy equation applied to the fluid, 
and heat conduction in the duct walls or its equivalent. For example, for a 
duct of sufficiently simple cross section, and with no internal heat sources 
within the fluid, the relationship 

-<^ S^S) ^ -- ^'^ 
would be used for the fluid. In fact, the use of Eq. 1 implies the use of 
Eq. 2, since together they represent a one (space)-dimensional approxinna-
tion to the exact energy equation for the fluid. 

For regenerators , ducts with specified time-dependent heat genera­
tion within the walls, and other similar devices, the heat-conduction equation 
is also required to account for transient heat t ransfer within the duct walls, 
thereby relating tg and q. This additional requirement resul ts in a compli­
cated mathematical problem, which, except for certain special limiting 
cases, can be solved only by nunnerical methods and machine computation. 
If the simplifications afforded by Eqs. 1 and 2 were elinninated by direct use 
of a more exact representation of the energy equation for the fluid, the nec­
essary machine computations would become cumbersome and time-consuming. 

For nuclear reactors , internal heat generation in the equivalent of 
the duct walls requires , in addition to the transient heat-conduction equa­
tion, introduction of appropriate neutron-kinetic expressions, which, in turn, 
are influenced by important interacting tempera ture effects. Elimination of 
the approximations implicit in the use of Eqs . 1 and 2 by direct use of a 
more exact version of the energy equation for the fluid is probably imprac­
tical today. 

Thus, for analyses of complex systenns such as nuclear r eac to r s , 
and probably also for simpler devices such as regenera tors , the use of Eq. 1 
to account for turbulent forced convec'tion during t ransients offers a s im­
plicity which is necessary in the in teres ts of computational pract icabil i ty. 
The potential for inaccuracies resulting from the use of Eq. 1 remains , of 
course; concern for these inaccuracies has existed in the nuc lea r - r eac to r 
field for some time. '"^ 



Various analytical investigations related to more exact predictions 
of convection heat t ransfer with wall-heat-flux transients in ducts have been 
reported in the l i t e ra ture . All the investigations concentrate on specific 
cases; most consider idealizations in which the wall heat flux or surface 
tempera tures a re specified functions of time;^"' and a few consider cases 
in which heat generation within a duct wall is speci f ied . ' ° ' " All these pub­
lications emphasize mathematical techniques and approximations for solu­
tions of the specific cases considered; and comparisons of results give some 
information related to the accuracy of the simpler calculations based on the 
use of Eqs . 1 and 2. However, the information is specific to the cases con­
sidered, and definitive generalizations are not possible. 

Perhaps the most recent and most detailed of these analytical in­
vestigations was performed by Gopalakrishnan," who treated the case of 
turbulent flow through a paral le l -pla te duct with transient internal heat 
generation within the duct walls. He developed a general computer p ro­
gram based on finite-difference representations of the coupled two (space)-
dimensional energy equations for the fluid and the duct walls, and then 
applied the p rogram to various specific cases involving exponentially in­
creasing or decreasing wall heat generation. He found that for sufficiently 
large time and distance from the duct inlet, h in Eq. 1 became constant, 
i.e., attained an asymptotic value. He also found, however, that for suffi­
ciently rapid heat-generation t ransients , the asymptotic value of h depends 
on the exponential period of the transient, and that this dependence occurred 
in ranges of interest to nuclear - reac tor applications. Thus, for such cases , 
even when asymptotic values a re obtained, the usual steady-state heat-
transfer coefficient is not correct for use in Eq. 1. Instead, an appropriate 
value depends on the form of the transient, which, of course, is usually not 
known in advance. 

In general , all the referenced investigations can be interpreted as 
showing that e r r o r s resulting from the use of Eq. 1 can be quite large in 
many cases of engineering interest . None of the investigations has found 
potentially more accurate al ternates to Eq. 1, other than the equivalent of 
using a more exact version of the fluid-energy equation to replace both 
Eqs. 1 and 2. 

Investigations emphasizing attempts to correlate transient experi­
mental data a re being performed by r e sea rche r s in the Soviet Union. 
These investigations a re not focused on mathennatical solutions of specific 
cases ; ra ther they are based on analytical and physical reasoning which 
suggests that h in Eq. 1 can be correlated empirically with experimental 
data, provided additional dimensionless pa ramete r s a re included with those 
usually associated with nontransient convection heat t ransfer . For heat-
flux t rans ients , the pertinent dimensionless parameter suggested is p ro ­
portional to the time rate of change of duct surface tempera ture . 
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For example, the recent publication of Koshkin et al.'^ gives empir­
ical correlations of turbulent gas-flow transient heat- t ransfer coefficients 
from experiments with step changes of electr ical heat generation in the 
walls of a tube. The generality of these types of correlations is , of course, 
uncertain; however, the experiments clearly show that h in Eq. 1 cannot be 
taken equal to its steady-state value with t ransients of interest to the en­
gineering applications considered. 

The purpose of this report is to present "improved" engineering 
relationships to account for turbulent forced-convection heat t ransfer in 
ducts during flux transients and steady flow. "Engineering relat ionships" 
mean mathematical expressions that are sufficiently simple to allow appli­
cation to engineering analyses in which forced-convection heat t ransfer may 
be only one of many interacting physical mechanisms. "Improved" means 
a demonstrable superiority in accuracy and generality over methods cur­
rently in use. 

For purposes of illustration, consider the following equation, which 
applies to a circular tube: 

If the terms represented by "+ ..." are omitted, Eq, 3 will usually account 
more accurately for turbulent forced-convection heat t ransfer during heat-
flux transients than will Eq. 1. When the heat flux q is independent of 
time T, Eq. 3 also serves as an "improved" engineering relation for cases 
with q a function of axial distance I. Finally, when the heat flux is inde­
pendent of both time and axial distance, Eq. 3 becomes equivalent to Eq. 1. 

Equation 3 is a specialized version of a more general expression. 
The source of this expression, the approximations upon which it is based, 
and its potential utility for practical engineering computations, are the 
major topics of this report. 

MAJOR ASSUMPTIONS 

The derivation of the general expression of which Eq. 3 is a special­
ized form is based on a joining of three mathematical techniques previously 
applied in the l i terature on forced-convection heat t ransfer in ducts. The 
first is the familiar and classic "separat ion-of-variables " technique for 
nontransient cases, which leads to related Sturm-Liouville problems and 
analytical solutions for specific cases ' in t e rms of infinite se r ies involving 
eigenfunctions. The second technique involves (1) integrating such infinite 
series for cases in which the wall heat flux is treated as an a rb i t r a ry con­
tinuous function of duct axial distance; and (2) then exploiting the resultant 
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formulation to obtain relatively simple engineering expressions for the 
general case of axially nonuniform time-independent wall heat flux.''* The 
third technique, first used by Siegel^ for transient plug-flow forced convec­
tion in ducts, consists of rephrasing the transient energy equation and its 
appropriate boundary conditions in ternns of a nnoving-coordinate system 
(Lagrangian formulation). The combination of the second and third tech­
niques, together with observations concerning the equivalent of thermal 
entrance regions, leads nearly directly to expressions like Eq. 3. 

The usefulness of these three techniques requires certain assump­
tions, including negligible physical-property tennperature dependence, fully 
developed incompressible flow, and negligible axial heat diffusion. The duct 
is considered synnmetrical in the sense that only one space coordinate 
normal to the duct axis is required for the mathematical formulation. 
Turbulent eddy diffusivities for heat transfer nnust be a function of this co­
ordinate only. All these assunnptions have served, for example, as the theo­
ret ical basis for justifying the use of Eq. 1 for steady-state heat t ransfer . 

The usefulness of the third technique requires the assumption that 
the fluid velocity distribution is uniform. This assumption is nnade here 
as a reasonable approximation to a highly turbulent flow in a duct. However, 
the proposed "improved" engineering relationships, like Eq. 3, a re formu­
lated so that the assunnption does not apply when the heat t ransfer is steady. 
The utility of Eq. 2 for t ransients also requires the same assumption. 
As a result , the proposed engineering relationships for heat-flux t rans ients , 
which, in effect, replace Eq. 1 as al ternates to use with Eq. 2, are at least 
consistent with this assunnption. 

Previous applications of the moving-coordinate systenn by Siegel, 
and la ter by Siegel and Per lmut te r , were based on the assumption of neg­
ligible turbulent eddy diffusivities in addition to a uniform velocity dis t r ibu­
tion; i.e., they were based on a plug-flow model for the fluid. However, this 
additional assumption is not necessary when the flow is steady and, accord­
ingly, is not used here . 

The customary use of eddy diffusivities to represent the local diffu­
sion of heat due to turbulence involves another assunnption. Eddy diffusivities 
added to nnolecular diffusivities imply a t ime-averaging of turbulent fluctua­
tions. For reasonable application to t ransients , the t ime scale of the aver­
aging should be snnall compared to that of the t rans ients . It is uncertain 
whether this requirennent will be nnet when fluid tennperatures change sig­
nificantly in time intervals of 1 msec or l e s s . An evaluation of this un­
certainty, which also applies to use of Eq. 1, will probably require analyses 
of carefully designed experinnents. 
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M A T H E M A T I C A L MODEL 

In m o s t e n g i n e e r i n g a p p l i c a t i o n s of Eq . 1 involving t r a n s i e n t s , q, 
tg, and t a r e unknown q u a n t i t i e s . F u r t h e r , when q is a funct ion of tinne, 
it would be an unusua l s i t ua t ion for q not to be a funct ion of p o s i t i o n a l s o . 
In p r i n c i p l e , if q w e r e known a s a funct ion of t i m e and p o s i t i o n , and if i n i ­
tial condi t ions could be spec i f i ed , then tg and t would be r e l a t e d to q by 
in tegra t ion of the e n e r g y equat ion for the f luid. T h u s , a p o t e n t i a l l y useful 
m a t h e m a t i c a l mode l to s tudy is one in which q is an a r b i t r a r y function of 
both t i m e and pos i t ion , and in i t i a l cond i t ions a r e suf f ic ien t ly g e n e r a l to 
cover nnore than a few app l i c a t i ons of e n g i n e e r i n g i n t e r e s t . 

Deta i led c o n s i d e r a t i o n s a r e l i m i t e d to duc t s that a r e s y m m e t r i c a l in 
the sense p r e v i o u s l y d e s c r i b e d . The nnost g e n e r a l duct s h a p e of t h i s kind 
is the annu la r s p a c e with d i f fe ren t hea t f luxes fronn both w a l l s , r e p r e s e n t e d 
nnathemat ica l ly so that the c i r c u l a r tube , the inf in i te ly wide p a r a l l e l p l ane 
duct , and an a c c u r a t e approxinnat ion to the rod o r pin bundle a r e inc luded 
as specia l c a s e s . This a n n u l a r s p a c e i s i l l u s t r a t e d in F i g . 1, wh ich a l s o 
identif ies some of the nonnenc la tu re to be u s e d . Note that y, the c o o r d i n a t e 
nornnal to the duct a x i s , i s chosen as d i s t a n c e f r o m the i n n e r wa l l of the 
annular space . Th i s choice is nnore or l e s s a r b i t r a r y , but i s conven ien t for 
including the l imi t ing c a s e s of c i r c u l a r t ubes and p a r a l l e l - p l a n e duc t s in 
the fornnulation. 

" 1 

X 0 

. .0 \ ! I 

J ^ 

> 
\—'—h'H ' K 

0 = 2Q 
X = y/a 
Z - (4/Pe)( i /D) 

R-0 0 < R < l 

o ® 
Fig. 1. The Generalized Annular Space 

With the ma jo r a s s u m p t i o n s d e s c r i b e d p r e v i o u s l y , the e n e r g y equa ­
tion for the fluid can be w r i t t e n a s 

(ri + y)(cy+s) 

with the boundary condi t ions 

= q,K,T) 

3y 

3y 

3£ _at_ 
^ 3-t "̂  3 T ' 

y=o 

(4) 

(5a) 
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and 

ay = ^{^.•y)- (5b) 
y=a 

The temperature at the duct inlet, where •t = 0, is taken as unifornn and 
constant. In Eq. 4, the eddy diffusivity e and fluid velocity u are known 
functions of y. As nnentioned previously, however, it will be necessary 
later to use the approximation u =• u. 

The initial condition t(y,-t,,0) for Eq. 4 is taken as the steady-state 
solution corresponding to the tinne-independent heat fluxes qj = q*('t) and 
I2 - 1* (''')• The formal mathematical solution for this case serves as the 
main basis for the derivation of the proposed "improved" engineering rela­
tions to replace Eq. 1 and will be discussed in some detail. Before doing so, 
however, Eq. 4 and its associated boundary, inlet, and initial conditions will 
be recast into a more convenient dimensionless fornn. 

Dimensionless distance nornnal to the duct axis x (0 S x ^ 1), dimen­
sionless axial distance z, and dimensionless tinne 6 are introduced. These 
and other quantities are defined in the Nonnenclature. The dimensionless 
fluid temperature is denoted by |(x,z,e), corresponding to dimensionless 
wall heat fluxes Fi(z,e) and F2(z,6). The initial condition is denoted by 
5(x,z,0) = 5*(x,z), corresponding to time-independent heat fluxes Fj'(z) and 
F*(z). The dinnensionless fluid velocity is denoted by g(x) = u/u. 

In addition to the above dimensionless quantities, the second-order 
differential operator L is introduced for conciseness in notation. This 
operator is defined by 

L( ) ^ J ^ |_ / rR + ( i .R)x] ( l + £ Pr) ^ j , (6) 
^ ' R + (1 -R) X 3x [_'• ^ ' •'V V / 3x J 

where R is the radius ratio of the annular space. The circular tube corre­
sponds to R = 0; for the parallel-plane duct, R = 1. 

Finally, the linearity of Eq. 4 and its associated conditions can be 
taken advantage of by defining 

|(x,z,e) = 5*(x,z) + ili(x,z,e), (7) 

where \|t is the dimensionless fluid temperature for the case F* = F* =0 , 
i.e., for the case of initially unifornn and constant fluid temperatures. 

Use of the above dimensionless quantities and definitions results in 
the following two related mathematical problems: 
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F o r | * ( x , z ) , 0 S x S 1, z 2 0: 

L I * = g (x )? : , («) 

| * (x ,0 ) = 0, (^^^ 

?*JO,z) = - F r ( z ) , (8b) 

and 

?* ( l , z ) = F* (z ) . 

F o r i|i(x,z,e); O S x < l , z 2 0, 6 ^ 0 : 

L* = g(x)ili^ + tg, 

i | i (x ,z ,0) = 0 , 

i | j (x ,o,e) = 0 , 

(8c) 

(9) 

(10a) 

(10b) 

and 

t ^ (0 , z ,6 ) = -G , ( z , e ) , (10^:) 

t^( i ,z ,e) = Gz(z,e), (lod) 

where 

Gi = F i - F * , i = 1,2: (11) 

(Where a p p e a r i n g in the above , and l a t e r e q u a t i o n s , the s u b s c r i p t s x, z, 
and 9 denote p a r t i a l d i f f e ren t i a t ion wi th r e s p e c t to t h e s e v a r i a b l e s . ) 

With the hea t - f lux funct ions F j and F * spec i f i ed , the fo rego ing m a t h e ­
nnatical fo rmula t ion d e t e r m i n e s the d i m e n s i o n l e s s fluid t e n n p e r a t u r e ?,{x,z,Q}. 
F r o m | ( x , z , 9 ) , the d innens ion le s s s u r f a c e t e m p e r a t u r e s 

5s j (z ,e) = 1(0,z ,6) , (12) 

§s,,(z,e) = 5(1,z,6), (13) 

and bulk t e m p e r a t u r e 

^i^'^) = j ^ f [R + {i-R)^] g(^n{^.^,e)d^ (14) 

can a lso be d e t e r m i n e d . The in ten t h e r e , h o w e v e r , i s not to spec i fy F j and 
F j . Ins tead, these functions a r e r e t a i n e d a s a r b i t r a r y , wi th the r e q u i r e m e n t 
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that they be continuous with continuous derivatives. It will be shown that the 
surface tempera tures , bulk tempera ture , and heat fluxes can then be related 
to each other in a general way that leads to potentially useful engineering 
relations of the type given by Eq. 3. 

STEADY-STATE NONUNIFORM HEAT FLUX 

The solution to this case corresponds to the initial condition |*(x,z) , 
as determined by solution of Eqs. 8. As will be seen, however, it also serves 
as the basis for determining i|r(x,z,9), and hence §(x,z,6). Accordingly, the 
superscr ipt "* " will be temporar i ly dropped from Eqs. 8, and the solution to 
the general s teady-state case will be denoted by ?(x,z), corresponding to 
time-independent heat fluxes F J z ) and F2(z). 

Formal mathematical solutions to this general case involving infinite 
ser ies of eigenfunctions have been published in various fornns; for example, 
in Refs. 14 and 15. The solution can be written as 

| (x ,z) = | (z ) + Y En(x)X„ f [C,,„F,(s) + C2,nF^(s)]e-^>^<^-'^ ds, (15) 

where 

2 r^ 
?(z) = YTR J [RFi(s) + F2(s)]ds, (15a) 

2R En(0) 
+ R N„ \„ • 

2 E„( l ) 

^ ' • - = T T R TTT-- (15b) 

(15c) 
^ 2 ' " - 1 + R NnXn ' 

and the Ejj(x), X^, and Nj^ a r e e igen func t ions , e i g e n v a l u e s , and c o r r e s p o n d i n g 
n o r m a l i z a t i o n f a c t o r s a s s o c i a t e d wi th the a p p r o p r i a t e S t u r m - L i o u v i l l e p r o b ­
l e m ou t l ined in the append ix . 

In Ref. 14, the e q u i v a l e n t of E q . 15 w a s c o n v e r t e d into a p o t e n t i a l l y 
nnore use fu l f o r m by s u c c e s s i v e i n t e g r a t i o n by p a r t s and r e a r r a n g e m e n t . 
T h e s e nnan ipu la t i ons of E q . 15 r e s u l t e d in the h e a t - f l u x - i n d e p e n d e n t func­
t i o n s £j j^(x,z) , i = 1,2; k = 1 , 2 , 3 , . . . , def ined by''̂  

'The symbol Cj j^ represents the same function given by Rĵ  j^ in Refs. 14 and 16. In this report, the symbol 
Rj j^ is used for an alternate definition of this function, which has been found to be more convenient for 
applications. 
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c. J-.^) = ( = i,k 

^ ^ k V Ci ,nEn(x ) ^-X,z_ 

n=l n 

With t he se funct ions, Eq . 15 can be w r i t t e n a s 

(16) 

r If 

5(x,z) - |(z) = Y C ^ k t ' ^ ' O ) ^ ^ + C2,k(^.0) 
k-r, •- dz k=o •-

d'^F2(z) 

dz 

^ , , d'^Fi(0+) ^ - , > d % 2 ( 0 + ) 
Ci,k(x.z) 4 r - ^ + <i>zM'^'^> dz*^ d z ' 

( 1 7 ) 

It c a n b e s e e n f r o m E q . 16 t h a t a s z — <», £ . , ( x , z ) — 0 . A s a r e s u l t , 

t h e l a s t b r a c k e t e d t e r m s of E q . 17 b e c o m e n e g l i g i b l e f o r s u f f i c i e n t l y l a r g e 

v a l u e s of z , i . e . , f o r a x i a l d i s t a n c e s s u f f i c i e n t l y f a r f r o m t h e d u c t i n l e t . 

T h e r e m a i n i n g t e r m s t h e n r e p r e s e n t a g e n e r a l i z e d , f u l l y d e v e l o p e d h e a t -

t r a n s f e r c o n d i t i o n in t h e s e n s e t h a t a n y r e m a i n i n g z d e p e n d e n c e o c c u r s 

o n l y b e c a u s e of t h e f l u x d i s t r i b u t i o n a n d i s e a s i l y a c c o u n t e d f o r o n c e t h e 

f u n c t i o n s J j j j . (x,0), w h i c h a r e i n d e p e n d e n t of z a n d t h e f l u x d i s t r i b u t i o n s , 

a r e kno \vn . 

In m o s t e n g i n e e r i n g a p p l i c a t i o n s , o n l y t h e s u r f a c e t e m p e r a t u r e s 

1 ( 0 , z ) a n d | ( l , z ) a r e r e q u i r e d , a n d o n l y t h e f u l l y d e v e l o p e d h e a t - t r a n s f e r 

c o n d i t i o n in t h e s e n s e d e s c r i b e d a b o v e n e e d b e c o n s i d e r e d . A s a r e s u l t , 

v a l u e s of t h e f u n c t i o n s £ j j ^ ( x , 0 ) a t x = 0 a n d x = 1 w e r e g i v e n s p e c i a l 

s i g n i f i c a n c e in R e f s . 14 a n d 16."'" In f a c t , i t i s e a s i l y s h o w n t h a t 

a n d 

C i , „ (0 ,0 ) = 2 ( N u i _ , ) " \ 

C2,o(0.0) = 2 [ ( N u , , 2 ) - ' - ( N u , , i ) " ' ] . 

C2,„(1.0) = 2 ( N U 2 , , ) - ' , 

Ci ,o(1 .0) = 2 [ ( N U 2 , 2 ) - ' - ( N u 2 , i ) - ' ] , 

( 1 8 a ) 

( 1 8 b ) 

( 1 8 c ) 

( 1 8 d ) 

w h e r e t h e N u j j r e p r e s e n t f u l l y d e v e l o p e d u n i f o r m - f l u x N u s s e l t n u m b e r s , 

w i t h 1 = 1 r e f e r r i n g t o t h e i n n e r w a l l of t h e a n n u l a r s p a c e , a n d i = 2 r e ­

f e r r i n g t o t h e o u t e r w a l l . T h e s u b s c r i p t j = 1 d e n o t e s t h e c a s e of a n o n z e r o 

h e a t f lux f r o m t h e " i " w a l l o n l y , a n d j = 2 d e n o t e s t h e c a s e of e q u a l h e a t 

See footnote on previous page. 
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fluxes from both walls . For the circular tube, Fj = 0 and only the Q k(^'°) 
a re needed. For the paral le l-plane duct, symmetry requires that Q vC -̂"̂ ) = 
C,^k(l,0) and £,1^(1,0) = Q.^^iO.O). 

The relationships given by Eqs. 18 are part icularly important, since 
the Nusselt numbers Nuj j a re those easiest to determine by experiment and 
include those usually correlated by available empirical equations for forced 
convection in ducts. 

With 5 replaced by ?*, and Fj replaced by F*, Eq. 17 can be used to 
determine ?* in Eq. 6. It will now be shown that Eq. 17 can also be used to 
determine \|( in Eq. 6. 

TRANSIENT HEAT FLUXES 

The solution to this general case requires the dimensionless t ran­
sient tempera ture functions \|r(x,z,e), as defined by Eq. 7. This function is 
determined by solution of the mathematical problem specified by Eqs . 9 
and 10. At this point in the analysis the assumption u =« u (i.e., g(x) = 1) is 
made as a reasonable approxinnation to highly turbulent flows. For then, 
each elennent of fluid moves at the sanne speed, and by a change to a moving 
coordinate system, Eqs . 9 and 10 can be nnade to correspond to Eqs. 8. 
In effect, either z or 9 can be eliminated as an independent variable in the 
differential equation and its boundary conditions. As a result , Eq. 17, when 
properly interpreted, can be used to represent i|((x,z,9). 

At present , the e r r o r s introduced by thi j uniform-fluid-velocity 
approxinnation are uncertain. However, they are expected to be small , 
especially with liquid metals , for which thernnal res is tances are not local­
ized near the duct walls as they are with high-Prandtl-nunnber fluids. Also, 
as mentioned previously, this approxinnation is required to justify the t ran­
sient one-dimensional-energy equation (e.g., Eq. 2); for example, by simple 
integration of Eq. 4 with respect to y. Since the major objective here is to 
propose potentially nnore accurate al ternates to Eq. 1 for use with the one-
dinnensional-energy equation, the approximation is at least consistent with 
this usage. 

The change to a moving-coordinate systenn follows the publications of 
Siegel ' and Siegel and Perlnnutter. The reader is referred to these publi­
cations for further descript ive details . 

For 9 s z, the independent variable z is replaced by z = Zj, + 9. 
The new variable , ZQ, represen ts the dimensionless axial location of a 
"s l ice" of fluid at the t ime the transient begins, i .e. , at 9 = 0. For a pa r ­
t icular value of ZQ, Z = ZQ + 9 represents a moving coordinate following 
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a particular "slice" of fluid as it moves through the duct. The change in 
independent variables from (x,z,9) to (X,9,ZQ), when applied to Eqs. 9 and 10 
with g(x) = 1, results in 

L r = *Q-, 

i|t"(x,0) = 0 , 

•x'(O.e) -Gr(9) 

(19) 

(20a) 

(20b) 

and 

r(i ,e) = G2-(e), (20c) 

where ZQ is an arbi t rary parameter . 

The superscript minus sign is used to emphasize that the above 
equations apply only when 9 s z. Fur ther , since Zj serves only as an arbi­
trary parameter held constant for the derivatives of Eq. 19, there are only 
two truly independent variables: x and 9. In effect, z has been elinninated 
as an independent variable; and to emphasize this, i|i(x,z,9) = \|/(x, ZQ+ 9, 9) is 
represented by i|f"(x,9), and Gj(z,9) = GJ(ZQ+ 9, 9) is represented by Gj"(9). 
As a result, the correspondence of Eqs . 19 and 20, to Eqs. 8 with g(x) = 1 
is easily recognized when 5* is replaced by \|r", F j is replaced by Gj", and 
z is replaced by 9. Thus, the solution for i|r"(x,9) can be obtained from 
Eq. 17 as 

r(x,9) - r(e) 
cc 

I 
k=o 

£i k(^'O) —k ° i " ( s ) + C2,k(^'°) ^ °2 ' (e ) 

Ci',k(x,e) ^ - Gr(o) + c 'k (x ,9) -^ G2-(o) 
dg" ' dg*" 

(21) 

with z = Zo + 9, 9 s z, and 

t-(9) = 
1 + R 

re 
/ [RGr(s ) + G2-(s)] d£ (22) 

le primes attached to the functions £ j j signify that they should be computed 
th g(x) = 1 (see Eq. 16 and the appendix) in order for 

The 
wi 
solution for Eqs. 19 and 20 

Eq. 21 to be an exact 

Equation 21 can be rewrit ten in ternns of the independent var iables z 
and e by evaluating the derivatives d^Gj ' /d9^, noting that these a re total 
derivatives for constant ZQ. It is easily shown that 
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dGj" SGj 3Gj 
dO ^ T F '*' Sz 

d^Gj-

d9^ 

5^Gj 3^Gj 3^Gj 

39^ "̂  " 3 93z ^ Sz^ 

and 

and that in general , using operator notation. 

r- = (^ ^ fz) -^ =- -'-^-dgk 

Thus, Eq. 21 can be rephrased as 

(23) 

' 00 

K x , z , 9 ) - i ( z , 9 ) = ^ [c; j^(x,0)D^Gi(z,9)+ c;,k(x,0)D%2(z,e)] 
k=o 

- [c; k(x,9)DkG,(zo,0) + Ŝ  j,(x,9)DkG2(zo,0)], (24) 

with z„ = z - 9 ^ 0 . 

For 9 s z, the independent variable 9 is replaced by 9 = 9o + z. The 
new variable, GQ, represen ts the dimensionless time when the "sl ice" of 
fluid at axial position z was at the duct inlet. The procedure is the same 
as that described above for 9 < z, except that GQ now serves as an a rb i t ra ry 
paranneter and the change in independent variables is fronn (x,z,9) to (x,z,9o). 
Equations 9 and 10 with g(x) = 1 become 

L*"^ = 112+. (25) 

i|/"'"(x,0) = 0, (26a) 

i|f^+(0,z) = -Gi + (z), (26b) 

and 

•x'^(l.^) = G2+(z), (26c) 

where 9Q is an a rb i t r a ry paranneter, with 

i|i(x,z,9) = \Kx, z ,9o+z) = i|("'"(x,z), 

and 
Gi'(z,9) = Gi(z, 9o+z) =Gi+(z). 
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The form of solution corresponding to Eqs. 21 and 22 can be ob­
tained by simply replacing 9 by z in these equations, noting, of course , 
that 9 = 9o + 2 '^"'i 6 ^ z. The form of solution corresponding to Eq. 24 
then follows by evaluating the total derivatives d-'̂ Gj"'"/dz''' in t e r m s of the 
independent variables z and 9. Thus, 

00 - - . 

t (x , z ,9 ) - i ( z ,9 ) = ^ [c; k(x,0)D''G,(z,9)+ £'_k(x,0)DkG2(z,9)J 
k=o 

- [e;_i,(x,z)D'^Gi(0,9o) + C2,k(^'^)D^G2(0,9„)] , (27) 

with Go = e - z 2 0. 

Equations 24 and 2 7 are more general equivalents of the relation­
ships derived by Siegel and Perlnnutter ' for flux t ransients with plug flow 
in parallel-plane ducts. These equations differ in form pr imar i ly because 
of the use of the functions £j j ^ . They are more general, because turbulent 
diffusivities are allowed to depend on x, and duct shape is more inclusive. 
With the functions Jj j^ known, which requires knowledge of the required 
eigenfunctions and eigenvalues from the appropriate Sturnn-Liouville prob­
lem (see appendix), Eqs. 24 and 27 can be applied to obtain solutions for 
various cases with Gj(z,9) specified. As mentioned previously, however, 
solutions for specified heat flux cases a re not the objective here . Instead, 
Eqs. 24 and 25 will now be used to infer potentially useful engineering 
relationships. 

ENGINEERING RELATIONSHIPS FOR FLUX TRANSIENTS 

The solution for 5+(x,z), as given by Eq. 17 with | = | * and F j = F*, 
can now be added to the solution for i|i(x,z,9), as given by Eqs . 24 and 27. 
According to Eq. 7, this addition of solutions resul ts in generalized expres­
sions for 5(x,z,9) for the two regions 9 s z and 6 2 z. But Eqs . 24 and 27 
require the approximation u =- u (i.e., g(x) = 1), and Eq. 17 does not. As a 
result, the functions Jj j^ and Jj j^ need not be equivalent. If these functions 
are not equal, then the 'expressions for 5(x,z,9) will involve t e rms like 
*i,k i ••• (Ci,k" £i,k) -^i- clearly, equality of these functions is desirable 
for simplicity. 

The functions Jj j^ and Jj j^ can be made equivalent by using the 
uniform-fluid-velocity approximation for both |* and i|r. Although e r r o r s 
introduced by this approximation a re expected to be small , especially for 
iquid metals, they can be completely suppressed for conditions in which 

|'(x,z,G) eventually becomes time-independent. This can be accomplished 
y not using the uniform fluid velocity for Jj j^ and then simply taking 

^i.k " ti_k' This is the approach adopted here . 
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For sufficiently large values of 9, the last bracketed ternns of Eq. 24 
become negligibly snnall. Similarly, for sufficiently large values of z, the 
equivalent t e r m s in Eq. 27 also beconne negligibly small. As a result , when 
both 9 and z are sufficiently large, Eqs . 24 and 27 are the same, and the 
pa rame te r s Zj and 9o need not be considered. This is a further generaliza­
tion of the fully developed heat - t ransfer condition discussed previously with 
respect to Eq. 17, but applied now to transient as well as nonunifornn heat 
fluxes. Thus, for £j j^ = Cj k "̂*̂  ^°^ both z and 9 sufficiently large, the 
solution for | (x ,z ,9) can be written 

00 

5(x,z,9) - f(z,G) = Y C, ,k(x.0p ' 'Fi(z ,9)+ J,_k(x,0)Dl'F2(z,6). (28) 
k=o 

The dimensionless axial distance z and dimensionless tinne 9 have 
been defined in a way convenient for discussing the derivation of Eq. 28. 
The definitions of the functions Jj y_ that result , however, are relatively in­
convenient for applications; in part icular , they depend heavily on the index k. 
Except for sign, the k dependence can be nearly removed by redefining 
dimensionless distance and tinne by 

Z = XjZ = P(t /D) (29a) 

e = X,G = P ( U T / D ) , (29b) 

and 

with 

P = 4Xi/Pe, (30) 

where Xj is the least nonzero eigenvalue from the appropriate Sturm-
Liouville problem (see appendix). When the F j in Eq. 28 are considered to 
be functions of Z and 8, rather than z and 9, the functions Jj j^ a re , in 
effect, nnultiplied by Xj . 

Equation 28 is now specialized for the surface tempera tures 5(0,z,9) 
and 5(1,z,G), and rewri t ten in a more convenient dimensional form, using 
Eqs . 18 and the new var iables Z and 6. For this purpose, Tg^j is used to 
represen t the surface tempera ture of either the inner (i = 1) or outer (i = 2) 
wall of the annular space. Also used are the fully developed, uniform-heat-
flux hea t - t ransfer coefficients h j j , corresponding to the Nusselt numbers 
of Eqs . 18 and new important coefficients denoted by Rj^j^ and Sjj^. With the 
deviative operator D'^ defined with respect to Z and 6, the specialized form 
of Eq. 28 can be written as 

1,1 1,2 j ^ - i 
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with the understanding that when i = 1, j = 2, and when i = 2, j - 1. For 
clarity, D^q is written out below for k = 1,2, and 3. 

For k = 1: 

D^q 
^ ^ _3q_ 
3Z 

PI 
'9q ^ i 3q 
hi u 3z_ 

(32a) 

For k 

k 9'q 
D'̂ q = ^ 3Z 

, a^q 3^q 
- + 2 3 _ + —2. 
2 3Z39 329 

\^)Ul^ u S^3T -2 3,2j-
(32b) 

For k 

s'q , , s'q , , a'q , a'q 
az^ 3ẑ ae 

+ 3 
3Z3e^ 30 ' 

VP/LS't^ u 3t^3T u hlhr^ u'' 3 T ' J ' 
(32c) 

The Rj j^ and Sj j^ are dinnensionless coefficients corresponding to the 
special values of the functions Jj j^ at x = 0 and x = 1; in par t icular . 

and 

^i,k = ^^C,,k(0'0). 

Si,k = ^}'£,,k(i.o), 

^2,k = ^ ^ 2 . k ( i - 0 ) . 

S2,k = ^fc2,k(o.o), 

= RS, k-

(33a) 

(33b) 

(33c) 

(33d) 

(33e) 

These coefficients and p are functions of only Reynolds (or Pecle't) and 
Prandtl numbers, and of duct shape. For sufficient large values of k, their 



absolute values become independent of k. Also, the Rj ^ a re negative for 
odd values of k and positive for even values of k, while the Sj ^ are positive 
for odd values of k and negative for even values of k. 

Equation 31, with the infinite summation truncated at k = 1 or 2, is 
suggested as an "improved" engineering relationship to account for forced-
convection heat t ransfer with heat-flux transients and steady flow. Use of 
Eq. 31 truncated at k > 2 is not recommended, unless the q.(-t,T) are a s ­
sumed to be known; at present , the resulting complications appear to be too 
severe to warrant application to practical engineering computations. Instead, 
h igher-ordered truncated forms of Eq. 31 are suggested as a means of test­
ing accuracy after qi(-(-,T) is determined with k = 1 or 2. 

Equation 31, with the summation te rm suitably truncated, which is 
suggested as a replacement for Eq. 1, is to be used with a corresponding 
version of the one (space)-dimensional-energy equation for the fluid. This 
energy equation can be written as 

^/L 31 3t \ 
"P^i" U^TT] = ^ ' l ' + ^2^3. (34) 

which is a more general form of Eq. 2, with Aj representing the heat-
transfer a rea per unit duct length for wall " i ." 

ENGINEERING RELATIONSHIPS FOR 
PARTICULAR DUCT SHAPES 

Applications of Eq. 31 require specialization to the part icular duct 
shape of interest , with corresponding values of the coefficients p, Rj k, and 
Sj k. In addition to duct shape, these coefficients are functions of Reynolds 
and Prandtl numbers . Values of these coefficients over a wide range of 
Reynolds and Prandtl numbers have been computed for the circular tube, 
paral lel plane duct, and an approximation of a pin or rod bundle. The ap­
proxinnation is the often-used nnodel that considers each pin to be surrounded 
by an equivalent annular space, with velocities and eddy diffusivities co r r e ­
sponding to a ze ro - shear condition at a fictitious outer wall. To compute 
these coefficients, the turbulent velocity g(x) and eddy-diffusivity distr ibu­
tion e(x) must be determined first. 

Computations of g(x) and e(x) were based on the von Karman-
Martinell i universal-velocity-distr ibution fornnulas, with eddy diffusivities 
for heat t ransfer equal to those for momentum transfer and uniform at their 
maximum values in the central regions of the duct. The necessary eigen­
values and eigenfunctions were computed by numerical solution of the appro­
pr ia te Sturm-Liouville problem, using a general computer p rogram developed 



for such applications." Eigenvalues and eigenfunctions were also computed 
for comparison with values obtained by o t h e r s , " ' " who used different 
methods for obtaining g(x) and e(x), and different numerical p rocedures . 
These comparisons were very favorable, indicating, for example, that the 
use of other methods for computing g(x) and e(x) wfll have only a minor 
effect on the coefficients p, Rj^k- ^"^ ^ j ^ -

Circular Tube 

Since a circular tube has only one wall, the subscripts i and j in 
Eq. 31 are unnecessary. Thus, tg j = tg; qj = q; qj = 0; hj^j = h; R j ^ = RkJ 
and Eq. 31 can be written as 

q 
h • S I k̂l̂ ''̂  ^''^^ + 

DfR,/3q 1 | i \ , . . . . (35b) 
2kp \ 3 i u 3 T / 

Note that Eqs. 35 identify the source of Eq. 3, and reduce to Eq. 1 when 
q is independent of t anti T. Values of the coefficients p and Rĵ  a re given 
in Table I. The fully-developed uniform-heat-flux heat- t ransfer coefficient 
h can be obtained from available ennpirical correlat ions. "' ' 

TABLE I. Values of Coefficients for Ci rcular Tube 

Re 

10* 

3.16 X lO* 

10= 

3.16 X 10= 

lo' 

Pr 

0.00316 

0.01 
0.0316 

1.0 

0.00316 

0.01 

0.0316 

1.0 

0.00316 
0.01 

0.0316 

1.0 

0.00316 
0.01 

0.0316 

1.0 

0.00316 

0.01 

0.0316 

1.0 

P 

1.942 

0.727 
0.343 

0.166 

0.706 

0.319 
0.195 

0.138 

0.302 

0.178 

0.138 

0.119 

0.165 

0.124 

0.112 

0.106 

0.114 

0.101 

0.0968 
0.0949 

-Rl 

0.164 

0.146 

0.110 

0.0104 

0.147 

0.113 

0.0674 

0.00368 

0.117 
0.0722 

0.0334 

0.00135 

0.0764 

0.0364 

0.0138 

0.000482 

0.0392 

0.0151 

0.00516 

0.000169 

Rz 

0.149 
0.131 

0.978 

0.00900 

0.133 
0.102 

0.0602 

0.00327 

0.106 

0.0648 

0.0299 

0.00120 

0.0683 
0.0326 

0.0124 
0.000432 

0.0352 

0.0136 
0.00463 

0.000152 

-RJ 

0.145 

0.128 

0.949 
0.00862 

0.130 

0.0992 
0.0583 

0.00315 

0.103 

0.0628 

0.0289 
0.00116 

0.0668 
0.0316 

0.0120 

0.000417 

0.0341 

0.0131 

0.00448 

0.000147 



Para l le l -p lane Duct 

The two walls for this case are geometrically equivalent. As 
a result , R,,^ = R^j^ = Rj^; S, j , = S,_ĵ  = Sj,; h,.i = hz.i = h^ hi,2 = h^.z = 
hz; and Eq. 31 can be written as 
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qj - q •..--^=^*S*fiZ(v\*%DNJ 
k=i 

(36a) 

hi 
_2 
ha 

D ' R I 

2kp 

Bqj 
hi 

1 ^ 
T: 3 T 

3q. pZg /3qj 1 3qj \ 
2kp \ 3-t u 3T / 

(36b) 

When q̂  and q are independent of I and T, Eqs. 36 reduce to the nnore 
accurate equivalents of Eq. 1 given in Refs. 14 and 16. Values of the co­
efficients p, Ry., and Sj^ a re listed in Table II. Recall that hj and h2 r e p r e ­
sent fully-developed uniform-heat-flux heat- t ransfer coefficients, with hj 
corresponding to the case of qj ^ 0, q. = 0, and h2 corresponding to the 
case of qj = qj. Values of hj and hj can be obtained from available 

1 . . • 2 0 2 1 

correla t ions . • 
TABLE II. Values of Coeff ic ients for P a r a l l e l - p l a n e Duct 

Re 

10* 

3.16 X 

10 ' 

3.16 X 

10 ' 

Pin or 

P r 

0.00316 
0.01 
0.0316 
1 

10* 0.00316 
0.01 
0.0316 
1 

0.00316 
0.01 
0.0316 
1 

lO' 0.00316 
0.01 
0.0316 
1 

0.00316 
0.01 
0.0316 
1 

Rod Bundl 

P 

1.48 3 
0.518 
0.213 
0.0757 

0.492 
0.196 
0.102 
0.0601 

0.185 
0.0931 
0.0639 
0.0507 

0.0865 
0.0576 
0.0484 
0.0443 

0.0527 
0.0436 
0.0407 
0.0394 

e 

-R. 

0.196 
0.179 
0.141 
0.0163 

0.187 
0.151 
0.0950 
0.00603 

0.159 
0.103 
0.0501 
0.00221 

0.111 
0.0552 
0.0218 
0.000804 

0.0599 
0.02 42 
0.00850 
0.000287 

Rl 

0.183 
0.167 
0.130 
0.0138 

0.174 
0.140 
0.0873 
0.00522 

0.147 
0.0952 
0.0455 
0.00194 

0.102 
0.0503 
0.0196 
0.000705 

0.0546 
0.0217 
0.00753 
0.000251 

-

- R J 

0.180 
0.164 _ 
0.128 
0.0133 

0.171 
0.138 
0.0857 
0.00 508 

0.145 
0.0953 
0.0446 
0.00189 

0.100 
0.0492 
0.0191 
0.000686 

0.0535 
0.0212 
0.00734 
0.000244 

Si 

0.168 
0.153 
0.119 
0.0119 

0.160 
0.128 
0.0794 
0.00461 

0.135 
0.0868 
0.0411 
0.00172 

0.0930 
0.0454 
0.0175 
0.000623 

0.0494 
0.0194 
0.00669 
0.000222 

- S i 

0.176 
0.160 
0.125 
0.0128 

0.167 
0.135 
0.0835 
0.00490 

0.142 
0.0911 
0.0433 
0.00182 

0.097b 
0.0478 
0.0185 
0.000662 

0.0521 
0.0205 
0.00710 
0.000236 

S J 

0.178 
0.162 
0.127 
0.0130 

0.170 
0.136 
0.0847 
0.00499 

0.143 
0.0924 
0.0440 
0.00186 

0.0990 
0.0486 
0.0189 
0.000675 

0.0529 
0.0209 
0.00723 
0.000240 

Since circumferential variations of temperature and heat flux are to 
be expected in a pin bundle, and since such variations were not considered 



in the derivation of Eq. 31, the surface temperature , wall heat flux, and 
fully developed heat-transfer coefficients that appear in this equation must 
be considered as circumferential average values. This, of course, applies 
also to current usage of Eqs. 1 and 2 for pin or rod bundles. 

When heat fluxes from adjacent pins are equal, Eq. 31 becomes 
equivalent in form to Eqs. 35 for the circular tube. Values of the coeffi­
cients p and R]^ are given in Table 111. These coefficients were connputed 
for pitch-to-diameter ratios of 1.1, 1.3, and 1.5; they were found to be 
essentially independent of the ratios in this range. However, the model used 
to approximate the pin or rod bundle is not considered to be very accurate 
for computing average heat-transfer coefficients when pi tch-to-diameter 
ratios are less than 1.3. As a result, similar inaccuracies a re to be ex­
pected for the coefficients p and Rj^. 

TABLE in. Values of Coefficients for Pin Bundles 
Having Pitch-to-Diameter Ratios of 1.1 to 1.5 

Re 

10* 

3.16 X 10* 

1 0 ' 

3.16 X 10' 

10 ' 

P r 

0.00316 
0.01 
0.0316 
1.0 

0.00316 
0.01 
0.0316 
1.0 

0.00316 
0.01 
0.0316 
1.0 

0.00316 
0.01 
0.0316 
1.0 

0.00316 
0.01 
0.0316 
1.0 

P 

2.804 
0.977 
0.400 
0.137 

0.938 
0.371 
0.192 
0.110 

0.354 
0.176 
0.119 
0.0929 

0.164 
0.108 
0.0895 
0.0811 

0.0990 
0.0808 
0.0749 
0.0722 

- R l 

0.181 
0.163 
0.125 
0.0106 

0.172 
0.136 
0.0816 
0.00429 

0.144 
0.0897 
0.0408 
0.00160 

0.0968 
0.0454 
0.0169 
0.000580 

0.0496 
0.0188 
0.00633 
0.000206 

Rz 

0.169 
0.153 
0.117 
0.00985 

0.162 
0.127 
0.0762 
0.00398 

0.135 
0.0838 
0.0381 
0.00149 

0.0905 
0.0423 
0.0157 
0.000538 

0.0463 
0.0174 
0.00 587 
0.000191 

- R J 

0.167 
0,151 
0.115 
0.00967 

0.159 
0.126 
0.0751 
0.00391 

0.133 
0.0826 
0.0374 
0.00146 

0.0891 
0.0416 
0.0154 
0.000528 

0.0455 
0.0171 
0.00577 
0.000187 

Values of the fully developed, uniform-heat-flux heat- t ransfer co­
efficient can be obtained from available empirical correlations.^ ' 

CONCLUDING REMARKS 

of th ^''^ derivation of Eq. 31 is based on a variety of assumptions. Most 
^̂  ttiese assumptions apply also to Eq. 1 as used in applications; including, 
tioVtTat t - ^ ^ requirement that z be "sufficiently la rge" and the assump-

u =• u to justify use of the one (space)-dimensional-energy equation 
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for the fluid, i .e. , Eq. 2 or 34. Equation 31 accounts for axially nonuniform 
and t ransient wall heat fluxes; Eq. 1 does not. Equation 31 assumes that 9 
is "sufficiently l a rge , " and applications require truncation of the summation 
te rm; also, Eq. 31 is based on the approximation J'(x,z) = J(x,z). 

The total effect of these assumptions on accuracy of predictions 
probably cannot be determined in a general quantitative manner. However, 
a variety of connparative computations for specific cases have been pe r ­
formed. These computations compared predictions, using Eq. 1 and t run­
cated forms of Eq. 31, with the resul ts of calculations based on models that 
do not use the most cr i t ical of these assumptions. For the cases considered, 
use of Eq. 31, truncated at k = 1, usually resulted in innprovements in ac­
curacy, compared to use of Eq. 1; and use of Eq. 31, truncated at k = 2, 
always resul ted in improvements in accuracy. For conditions of interest to 
l iquid-metal-cooled fas t -b reeder - reac to r safety studies, significant im­
provements in accuracy appear to result only for extrennely rapid t rans ients , 
e.g., exponential heat-flux increases with exponential periods in the mil l i ­
second range. Fur the r connparative connputations of this kind are continuing, 
with ennphasis on cases of interest to nuclear- reactor safety studies in 
general . 

There is an interesting correspondence between the computed r e ­
sults obtained by Gopalakrishnan' and Eqs. 35 and 36. Recall that 
Gopalakrishnan treated cases of exponentially increasing heat genera­
tion within the duct walls. He found that for sufficiently large t ime, the 
"actual" hea t - t ransfer coefficient--i .e. , q/(tg - t ) - -became independent of 
t ime, and that for sufficiently small exponential periods, it was significantly 
l a rger than the corresponding fully developed nontransient value. He also 
found that the "actual" heat - t ransfer coefficient, when expressed as a 
Nussel t number, could be treated as a function of Reynolds and Prandtl 
nunnbers, and of the dimensionless quantity D^/aP, where P is the expo­
nential period. 

With exponentially increasing heat generation, the heat flux to the 
fluid will eventually become proportional to the heat generation; i.e., 
q ~ e V P . Thus by neglecting the space dependence of q and letting h' de­
note the "actual" heat - t ransfer coefficient, Eq. 35b can be rear ranged and 
writ ten 

i l = 1 ^ /NuRiWDlX (37) 
2 \ P e p A a P / •••• 

where Nu represen t s the fully developed uniform-heat-flux Nusselt number. 
Note that Pe = RePr ; Nu, Rj, and p a re functions only of Re and P r ; and 
RJ is negative. Equation 37 predic ts all the effects found by Gopalakrishnan, 
as summarized in the preceding paragraph. 



APPENDIX 

The Related Sturm-Liouville Problem 

The Sturm-Liouville problem which defines the eigenfunctions, 
eigenvalues, and other quantities for Eq. 15 can be written as 

LE„(x) + X„g(x)En(x) = 0, O S x S l , (A.l) 

with 

E ; ( 0 ) = E ; ( 1 ) = 0. (A.2) 

The differential operator L is defined by Eq. 6, and the pr imes 
denote differentiation with respect to x. The normalization factor Nĵ  is 
given by 

Nn = T T R / [R •*• (1 - R) ^'i sM^nM dx. (A.3) 

The Expansion Coefficients Cj ^ 

The Cj J, (i = 1 or 2) that appear in Eq. 15 are expansion coefficients 
for the generalized Fourier expansions of the functions Vj(x). These func­
tions are defined by 

LVi(x) = - ^ g(x), (A.4) 

with 

V;(0) = - 1 , (A.5a) 

and 

V.'(l) = 0; (A.5b) 

and by 

^^^(x) = y - ^ g(x), (A.6) 

with 

V2(0) = O, 

and 

v;(i) = 1. 

(A.7a) 

(A.7b) I 
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The Vj(x) are actually dinnensionless fluid temperature distributions for 
fully developed heat t ransfer in an internally heated (i = 1), or externally 
heated (i = 2) annular space, with axially uniform heat flux. The expansion 
coefficients a re given by 

2 r' 
^^•"^ = ( 1 + R ) N „ j „ [R + ( l - R ) ' ' ] g (x )En(x )Vi (x )dx (A.8) 

1 (A.9a) 

2. (A.9b) 

( 1 + R ) N „ J„ 

2R E„(0) 
1 + R N^X„ 

2 E n ( l ) 
1 + R N„X„ 

LiM-^i 

for i 

for i 
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